

HPC application on horizontal tank

ESTIMATION HEAT FLUX LOSSES CRUDE OIL HORIZONTAL TANK

1. Heat flux analysis

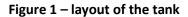
The following tables refer to an analytical estimation, based on the given data, of the energy losses on horizontal tank.

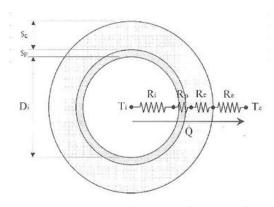
Figure 1 show the layout of the tank to be treated including the insulation.

The analysis has been carried out by considering a steam inner temperature equal to Ti= 160°C. A constant air temperature equal to Tair=15°C was assumed for the analytical simulation.

Table 1 shows the analytical results, based on the assumed data, considering the insulation type Hot Pipe Coating with a total thickness of 8 mm, in order to achieve an external surface temperature equal to $Te \le 60$ °C.

Table 2 shows the analytical results in terms of heat losses, energy savings, external surface temperature and HPC consumption as function of the HPC thickness.


Figure 2 and Figure 3 show respectively the heat flux losses and wall temperatures as function of the HPC thickness and the heat flux losses and energy savings as funtion of the HPC thickness.



HPC application on horizontal tank

Table 1 – Analytical results insulation thickness equal to 8 mm

Outer diameter tank	Do	(m)	3.4
Inner diameter tank	Di	(m)	3.3916
Thickness wall tank	Sp	(m)	0.0040
	-	(W/m°C)	54.0
Thermal conductivity tank	λp		
Fluid temperature inner tank	Ti	(°C)	160
Inner convection coeff.	hi	(W/m ² °C)	1233.3
Temperature external air	Te	(°C)	15.0
External convection coeff.	he	(W/m ² °C)	11.5
	D:	(00 - 11/)	0.000070447
Inner convection resistance	Ri	(°Cm/W)	0.000076117
Wall tank conduction resistance	Rp	(°Cm/W)	0.000007291
Insulation conducton resistance	Rc	(°Cm/W)	0.018680192
Outer convection resistance	Re	(°Cm/W)	0.008112286
Transmitted thermal power per square meter unit WITH HPC	Q	(Wh/m ²)	503.79
Transmitted thermal power per square meter unit WHTH C	QT	(KWh)	110.27
Transmitted thermal power per total area NO insulation	QT'	(KWh)	361.34
ENERGY SAVING	Q I	%	69.48
ENERGY OAVING		70	09.40
Inner temperature wall	Ti/t	(°C)	159.7
External temperature wall	Te/t	(°C)	159.6
External temperature Coating (calculated from the inside)	Te/c	(°C)	59
Coating thickness		(mm)	8.00
Length considered for treatment		(m)	18.63
#		, ,	1.00
Area		(m²)	217.85
dry volume coating		%	71.00
conversion mm to mil		mil	314.96
consumption per gallon		(m²/gal)	0.224
TOTAL NEED		(gal)	648

HPC application on horizontal tank

Table 2 – Energy losses as function of the HPC thickness

Thickness of HPC	Energy losses per m ²	Energy losses for total length	SAVINGS	Surface temp.	Calculated consumption	
mm	Wh/m²	KWh	%	°C	gal	# pails
0	1650.6	361.3	0	159	0	0
1	1284.9	281.3	22.1	127	81	17
2	1051.9	230.3	36.2	106	162	33
3	890.4	194.9	46.0	92	243	49
4	771.9	168.9	53.2	82	324	65
5	681.2	149.1	58.7	74	405	81
6	609.6	133.5	63.0	68	486	98
7	551.7	120.8	66.6	63	567	114
8	503.7	110.3	69.5	59	648	130
9	463.5	101.5	71.9	55	729	146
10	429.2	93.9	74.0	52	810	163
12	373.9	81.8	77.3	48	973	195
15	313.3	68.6	81.0	42	1217	244

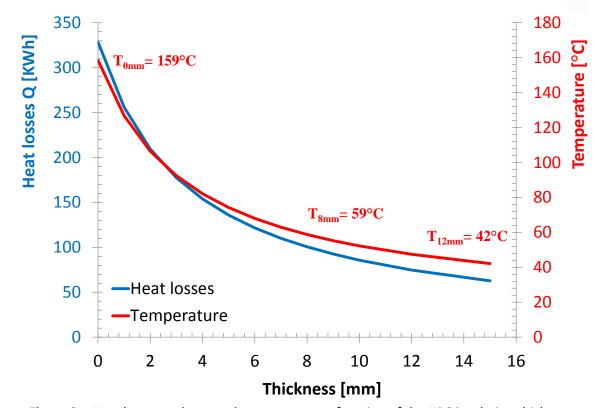


Figure 2 – Heat losses and external temperature as function of the HPC insulation thickness

HPC application on horizontal tank

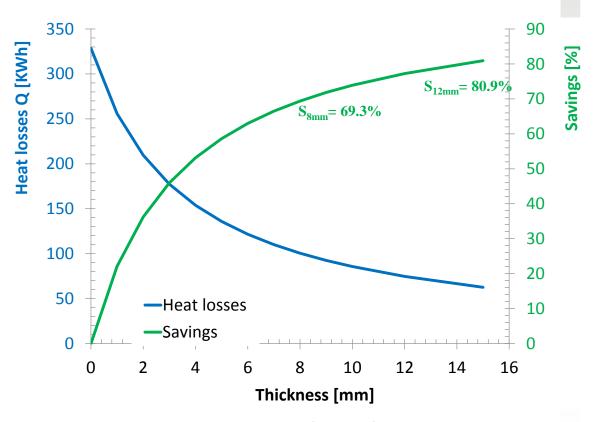


Figure 3 – Heat Losses and energy savings as function of the HPC insulation thickness

NOTE: All calculations submitted by SPE are purely informative. All calculations are based on estimations and limited information that has been received from third parties, which to the best of our knowledge is reliable and accurate. All calculations, estimations, recommendations or suggestions relating to the use of the products, may in no way be considered binding. The products and information are designed for users having the requisite knowledge and industrial skills, and the end-user has the responsibility to determine the suitability of the product for its intended use.

